If it's not what You are looking for type in the equation solver your own equation and let us solve it.
^2+Y^2+8Y=84
We move all terms to the left:
^2+Y^2+8Y-(84)=0
determiningTheFunctionDomain Y^2+8Y-84+^2=0
We add all the numbers together, and all the variables
Y^2+8Y=0
a = 1; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·1·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*1}=\frac{-16}{2} =-8 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*1}=\frac{0}{2} =0 $
| 8x+9-13x=44 | | (15÷3x1)x(10x10+85=) | | -9-4q=-q | | 3x-5x-1=-9 | | n/2/3=18/1/2 | | 200x=160 | | 6x2-x-5=0 | | 2x+5+7x=68 | | 9a-7-4a=4a+12-4a | | 28/35=38/n | | -b+5=2-4b | | -16t^2+5.5=15 | | 6x2-5x+2=0 | | 4(2x–9)+24x+24=6(9x–5)–26x= | | X^2=729,y=729^1/2 | | -5q=-8-4q | | .x8=0.625 | | -8+6p=10+3p | | -13=-13x | | 2x+10+180=180 | | 9a-7=4a+12 | | -17-7x=-3 | | -2+7r=6r-9 | | (x^2)(x)-14,400=0 | | 2x3-9x2+5=0 | | x+16=-21 | | 14x2+5x-1=0 | | 15+24x=111 | | 2x+16=x+15 | | 12-12x=144 | | -2(3x-8)=-6x+10-3x | | 8u=+8 |